2.2.49. addStrainTensors


Purpose

Add column(s) containing given strains based on given stretches of requested deformation gradient column(s).

parent_gray

Usage

> addStrainTensors options ASCII table(s) 

parent_gray

Options

-u / --right
material strains based on right Cauchy--Green deformation, i.e., C and U
-v / --left
spatial strains based on left Cauchy--Green deformation, i.e., B and V
-0 / --logarithmic
calculate logarithmic strain tensor
-1 / --biot
calculate biot strain tensor
-2 / --green
calculate green strain tensor
-f / --defgrad [ ['f'] ]
heading(s) of columns containing deformation tensor values


parent_gray

Note

the »material stretch tensor« $ \tnsr U $ following from the »right Cauchy–Green deformation tensor«: $ \tnsr C = \tnsr F^\text T\tnsr F = \tnsr U^\text T \tnsr R^\text T \tnsr R\,\tnsr U = \tnsr U^2 = \lambda_i^2\,\vctr u_i \otimes \vctr u_i $ the »spatial stretch tensor« $ \tnsr V $ following from the »left Cauchy–Green deformation tensor«: $ \tnsr B = \tnsr F\,\tnsr F^\text T = \tnsr V \tnsr R \tnsr R^\text T \tnsr V^\text T = \tnsr V^2 = \lambda_i^2\,\vctr v_i \otimes \vctr v_i $
  1. : $ \ln(\lambda_i)\,\vctr n_i \otimes \vctr n_i $ (»material« or »spatial Hencky«)
  2. : $ (\lambda_i-1)\,\vctr u_i \otimes \vctr u_i $ (»material Biot«)
    $ (1-{\lambda_i}^{-1})\,\vctr v_i \otimes \vctr v_i $ (»spatial Biot«)
  3. : $ \frac{1}{2}({\lambda_i}^2-1)\,\vctr u_i \otimes \vctr u_i $ (»material Green«)
    $\frac{1}{2}(1-{\lambda_i}^{-2})\,\vctr v_i \otimes \vctr v_i $ (»spatial Almansi«)

Strain formulas are taken from chapter 2.3 in

A. Bertram
Elasticity and Plasticity of Large Deformations: An Introduction
3rd edition, Springer, 2012
ISBN:9783642246142

This topic: Documentation > Processing > PostProcessing > AddStrainTensors
Topic revision: 07 Mar 2019, MartinDiehl
This site is powered by FoswikiCopyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection