1.6.3. Hexagonal (hex)

Atom arrangement

Figure 1: Hexagonal lattice structure.


parent_gray

Slip systems

Figure 2: Basal slip system in hexagonal lattice: $\langle 1 1 \bar 2 0\rangle \{0 0 0 1\}$

index slip direction plane normal
1 $[2 \bar 1 \bar 1 0]$ $(0 0 0 1)$
2 $[\bar 1 2 \bar 1 0]$ $(0 0 0 1)$
3 $[\bar 1 \bar 1 2 0]$ $(0 0 0 1)$

index slip direction plane normal
4 $[2 \bar 1 \bar 1 0]$ $(0 1 \bar 1 0)$
5 $[\bar 1 2 \bar 1 0]$ $(\bar 1 0 1 0)$
6 $[\bar 1 \bar 1 2 0]$ $(1 \bar 1 0 0)$

index slip direction plane normal
7 $[0 1 \bar 1 0]$ $(2 \bar 1 \bar 1 0)$
8 $[\bar 1 0 1 0]$ $(\bar 1 2 \bar 1 0)$
9 $[1 \bar 1 0 0]$ $(\bar 1 \bar 1 2 0)$

index slip direction plane normal
10 $[2 \bar 1 \bar 1 0]$ $(0 1 \bar 1 1)$
11 $[\bar 1 2 \bar 1 0]$ $(\bar 1 0 1 1)$
12 $[\bar 1 \bar 1 2 0]$ $(1 \bar 1 0 1)$
13 $[1 1 \bar 2 0]$ $(\bar 1 1 0 1)$
14 $[\bar 2 1 1 0]$ $(0 \bar 1 1 1)$
15 $[1 \bar 2 1 0]$ $(1 0 \bar 1 1)$

Figure 6: 1st order pyramidal <c+a> slip system in hexagonal lattice: $\langle 1 1 \bar 2 3\rangle \{1 0 \bar 1 1\}$

index slip direction plane normal
16 $[2 \bar 1 \bar 1 3]$ $(\bar 1 1 0 1)$
17 $[1 \bar 2 1 3]$ $(\bar 1 1 0 1)$
18 $[\bar 1 \bar 1 2 3]$ $(1 0 \bar 1 1)$
19 $[\bar 2 1 1 3]$ $(1 0 \bar 1 1)$
20 $[\bar 1 2 \bar 1 3]$ $(0 \bar 1 1 1)$
21 $[1 1 \bar 2 3]$ $(0 \bar 1 1 1)$
22 $[\bar 2 1 1 3]$ $(1 \bar 1 0 1)$
23 $[\bar 1 2 \bar 1 3]$ $(1 \bar 1 0 1)$
24 $[1 1 \bar 2 3]$ $(\bar 1 0 1 1)$
25 $[2 \bar 1 \bar 1 3]$ $(\bar 1 0 1 1)$
26 $[1 \bar 2 1 3]$ $(0 1 \bar 1 1)$
27 $[\bar 1 \bar 1 2 3]$ $(0 1 \bar 1 1)$

Figure 7: 2nd order pyramidal <c+a> slip system in hexagonal lattice: $\langle 1 1 \bar 2 3\rangle \{1 1 \bar 2 2\}$

index slip direction plane normal
28 $[2 \bar 1 \bar 1 3]$ $(\bar 2 1 1 2)$
29 $[\bar 1 2 \bar 1 3]$ $(1 \bar 2 1 2)$
30 $[\bar 1 \bar 1 2 3]$ $(1 1 \bar 2 2)$
31 $[\bar 2 1 1 3]$ $(2 \bar 1 \bar 1 2)$
32 $[1 \bar 2 1 3]$ $(\bar 1 2 \bar 1 2)$
33 $[1 1 \bar 2 3]$ $(\bar 1 \bar 1 2 2)$


parent_gray

Twin systems

Figure 8: $K_1$ $\langle 1 0 \bar 1 \bar 1\rangle$ - $n_1$ $\{1 0 \bar 1 2\}$ T1 - Tensile twinning in Co, Mg, Zr, Ti, and Be; compressive twinning in Cd and Zn.

$\eta_1$ $K_1$ $\eta_2$ $K_2$
$\langle \bar 1 0 1 1\rangle$ $\{1 0 \bar 1 2\}$ $\langle 1 0 \bar 1 1\rangle$ $\{1 0 \bar 1 \bar 2\}$

index slip direction plane normal
1 $[1 \bar 1 0 1]$ $(\bar 1 1 0 2)$
2 $[\bar 1 0 1 1]$ $(1 0 \bar 1 2)$
3 $[0 1 \bar 1 1]$ $(0 \bar 1 1 2)$
4 $[\bar 1 1 0 1]$ $(1 \bar 1 0 2)$
5 $[1 0 \bar 1 1]$ $(\bar 1 0 1 2)$
6 $[0 \bar 1 1 1]$ $(0 1 \bar 1 2)$

Figure 9: $K_1$ $\langle \bar 1 \bar 1 2 6\rangle$ - $n_1$ $\{1 1 \bar 2 1\}$ T2 - Tensile twinning in Co, Re, and Zr.

$\eta_1$ $K_1$ $\eta_2$ $K_2$
$\langle \bar 1 \bar 1 2 6\rangle$ $\{1 1 \bar 2 1\}$ $\langle 1 1 2 0\rangle$ $\{0 0 0 2\}$

index slip direction plane normal
7 $[2 \bar 1 \bar 1 6]$ $(\bar 2 1 1 1)$
8 $[\bar 1 2 \bar 1 6]$ $(1 \bar 2 1 1)$
9 $[\bar 1 \bar 1 2 6]$ $(1 1 \bar 2 1)$
10 $[\bar 2 1 1 6]$ $(2 \bar 1 \bar 1 1)$
11 $[1 \bar 2 1 6]$ $(\bar 1 2 \bar 1 1)$
12 $[1 1 \bar 2 6]$ $(\bar 1 \bar 1 2 1)$

Figure 10: $K_1$ $\langle 1 0 \bar 1 \bar 2\rangle$ - $n_1$ $\{1 0 \bar 1 1\}$ C1 - Compressive twinning in Mg.

$\eta_1$ $K_1$ $\eta_2$ $K_2$
$\langle 1 0 \bar 1 \bar 2\rangle$ $\{1 0 \bar 1 1\}$ $\langle 3 0 \bar 3 2\rangle$ $\{1 0 \bar 1 \bar 3\}$

index slip direction plane normal
13 $[\bar 1 1 0 \bar 2]$ $(\bar 1 1 0 1)$
14 $[1 0 \bar 1 \bar 2]$ $(1 0 \bar 1 1)$
15 $[0 \bar 1 1 \bar 2]$ $(0 \bar 1 1 1)$
16 $[1 \bar 1 0 \bar 2]$ $(1 \bar 1 0 1)$
17 $[\bar 1 0 1 \bar 2]$ $(\bar 1 0 1 1)$
18 $[0 1 \bar 1 \bar 2]$ $(0 1 \bar 1 1)$

Figure 11: $K_1$ $\langle 1 1 \bar 2 \bar 3\rangle$ - $n_1$ $\{1 1 \bar 2 2\}$ C2 - Compressive twinning in Ti and Zr.

$\eta_1$ $K_1$ $\eta_2$ $K_2$
$\langle 1 1 \bar 2 \bar 3\rangle$ $\{1 1 \bar 2 2\}$ $\langle 2 2 \bar 4 3\rangle$ $\{1 1 \bar 2 \bar 4\}$

index slip direction plane normal
19 $[2 \bar 1 \bar 1 \bar 3]$ $(2 \bar 1 \bar 1 2)$
20 $[\bar 1 2 \bar 1 \bar 3]$ $(\bar 1 2 \bar 1 2)$
21 $[\bar 1 \bar 1 2 \bar 3]$ $(\bar 1 \bar 1 2 2)$
22 $[\bar 2 1 1 \bar 3]$ $(\bar 2 1 1 2)$
23 $[1 \bar 2 1 \bar 3]$ $(1 \bar 2 1 2)$
24 $[1 1 \bar 2 \bar 3]$ $(1 1 \bar 2 2)$

Topic attachments
I Attachment Action Size Date Who Comment
0_Indexation_topview.svgsvg 0_Indexation_topview.svg manage 456 bytes 23 May 2013 - 09:34 DavidMercier Indexation of the hexagonal unit cell
HCP_crystal_structure.pngpng HCP_crystal_structure.png manage 168 K 17 Oct 2012 - 17:21 PhilipEisenlohr Hexagonal lattice structure
HCP_crystal_structure.svgsvg HCP_crystal_structure.svg manage 2 K 17 Oct 2012 - 17:20 PhilipEisenlohr Hexagonal lattice structure (vector-based)
HCP_slip_system_basal.pngpng HCP_slip_system_basal.png manage 175 K 17 Oct 2012 - 17:29 PhilipEisenlohr Hexagonal slip system basal
HCP_slip_system_basal.svgsvg HCP_slip_system_basal.svg manage 3 K 17 Oct 2012 - 17:29 PhilipEisenlohr Hexagonal slip system basal (vector-based)
HCP_slip_system_prism2nd_a.pngpng HCP_slip_system_prism2nd_a.png manage 194 K 25 Jun 2013 - 10:33 DavidMercier Hexagonal slip system 2nd prismatic [a]
HCP_slip_system_prism2nd_a.svgsvg HCP_slip_system_prism2nd_a.svg manage 3 K 25 Jun 2013 - 10:33 DavidMercier Hexagonal slip system 2nd prismatic [a] (vector based)
HCP_slip_system_prism_a.pngpng HCP_slip_system_prism_a.png manage 189 K 17 Oct 2012 - 17:40 PhilipEisenlohr Hexagonal slip system prismatic [a]
HCP_slip_system_prism_a.svgsvg HCP_slip_system_prism_a.svg manage 3 K 17 Oct 2012 - 17:39 PhilipEisenlohr Hexagonal slip system prismatic [a] (vector-based)
HCP_slip_system_pyramidal1st_a.pngpng HCP_slip_system_pyramidal1st_a.png manage 199 K 17 Oct 2012 - 20:28 PhilipEisenlohr Hexagonal slip system 1st pyramidal [a]
HCP_slip_system_pyramidal1st_a.svgsvg HCP_slip_system_pyramidal1st_a.svg manage 3 K 17 Oct 2012 - 20:27 PhilipEisenlohr Hexagonal slip system 1st pyramidal [a] (vector-based)
HCP_slip_system_pyramidal1st_c+a.pngpng HCP_slip_system_pyramidal1st_c+a.png manage 203 K 17 Oct 2012 - 20:19 PhilipEisenlohr Hexagonal slip system 1st pyramidal [c+a]
HCP_slip_system_pyramidal1st_c+a.svgsvg HCP_slip_system_pyramidal1st_c+a.svg manage 3 K 17 Oct 2012 - 20:19 PhilipEisenlohr Hexagonal slip system 1st pyramidal [c+a] (vector-based)
HCP_slip_system_pyramidal2nd_c+a.pngpng HCP_slip_system_pyramidal2nd_c+a.png manage 196 K 17 Oct 2012 - 20:46 PhilipEisenlohr Hexagonal slip system 2nd pyramidal [c+a]
HCP_slip_system_pyramidal2nd_c+a.svgsvg HCP_slip_system_pyramidal2nd_c+a.svg manage 3 K 17 Oct 2012 - 20:46 PhilipEisenlohr Hexagonal slip system 2nd pyramidal [c+a] (vector-based)
HCP_twin_system_compressive_K1(10-11).pngpng HCP_twin_system_compressive_K1(10-11).png manage 197 K 23 May 2013 - 09:59 DavidMercier Hexagonal twin system compressive K1(10-11)
HCP_twin_system_compressive_K1(10-11).svgsvg HCP_twin_system_compressive_K1(10-11).svg manage 3 K 23 May 2013 - 10:00 DavidMercier Hexagonal twin system compressive K1(10-11) (vector based)
HCP_twin_system_compressive_K1(11-22).pngpng HCP_twin_system_compressive_K1(11-22).png manage 196 K 23 May 2013 - 10:02 DavidMercier Hexagonal twin system compressive K1(11-22)
HCP_twin_system_compressive_K1(11-22).svgsvg HCP_twin_system_compressive_K1(11-22).svg manage 3 K 23 May 2013 - 10:03 DavidMercier Hexagonal twin system compressive K1(11-22) (vector based)
HCP_twin_system_tensile_K1(-1012).pngpng HCP_twin_system_tensile_K1(-1012).png manage 193 K 23 May 2013 - 12:16 DavidMercier Hexagonal twin system tensile K1(-1012)
HCP_twin_system_tensile_K1(-1012).svgsvg HCP_twin_system_tensile_K1(-1012).svg manage 3 K 23 May 2013 - 12:16 DavidMercier Hexagonal twin system tensile K1(-1012) (vector-based)
HCP_twin_system_tensile_K1(11-21).pngpng HCP_twin_system_tensile_K1(11-21).png manage 226 K 23 May 2013 - 11:53 DavidMercier Hexagonal twin system tensile K1(11-21)
HCP_twin_system_tensile_K1(11-21).svgsvg HCP_twin_system_tensile_K1(11-21).svg manage 3 K 23 May 2013 - 11:53 DavidMercier Hexagonal twin system tensile K1(11-21) (vector-based)
This topic: Documentation > Background > CrystalLattice > Hex
Topic revision: 01 Aug 2016, PhilipEisenlohr
This site is powered by FoswikiCopyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection