$\def\dblContInOut{{\scriptscriptstyle\bullet\circ}}\def\dblContOutIn{{\scriptscriptstyle\circ\bullet}}$

## Acknowledgment

The notation of tensors and operators is largly adopted from O. Kintzel & Y. Başar (2006). One notable exception is the notation change from $\tnsr A \times \tnsr B$ to $\tnsr A \odot \tnsr B$ for one particular second order tensor product (see below).

## Notation scheme

Scalars $x$, vectors $\vctr v$, second order tensors $\tnsr A$, fourth order tensors $\tnsrfour B$, and basis vectors $\vctr g$.

## Tensor products

\begin{eqnarray*} \tnsrfour C &= \tnsr A \otimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \odot \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g_j \\ & &= A^{il} B^{jk}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \boxtimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_j\otimes\vctr g_l \\ & &= A^{ik} B^{jl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \end{eqnarray*}

## Double contraction

\begin{eqnarray*} \tnsrfour C &= \tnsrfour A :\tnsrfour B &= A^{ijkl} B_{klmn}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g^m\otimes\vctr g^n \\ \tnsr C &= \tnsrfour A \dblContInOut \tnsr B &= A^{ijkl} B_{jk}\,\vctr g_i\otimes\vctr g_l \\ \tnsr C &= \tnsr A \dblContInOut \tnsrfour B &= A_{il} B^{ijkl}\,\vctr g_j\otimes\vctr g_k \\ \tnsrfour C &= \tnsrfour A \dblContInOut \tnsrfour B &= A^{ijkl} B_{jmnk}\,\vctr g_i\otimes\vctr g^m\otimes\vctr g^n\otimes\vctr g_l \\ \tnsr C &= \tnsrfour A \dblContOutIn \tnsr B &= A^{ijkl} B_{il}\,\vctr g_j\otimes\vctr g_k \\ \tnsr C &= \tnsr A \dblContOutIn \tnsrfour B &= A_{jk} B^{ijkl}\,\vctr g_i\otimes\vctr g_l \\ \tnsrfour C &= \tnsrfour A \dblContOutIn \tnsrfour B &= A^{ijkl} B_{miln}\,\vctr g^m\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g^n \end{eqnarray*}

## Fourth order identity tensors

\begin{align*} \tnsrfour I &= \tnsr I\otimes\tnsr I = \vctr g_i\otimes\vctr g^i\otimes\vctr g_j\otimes\vctr g^j \\ \tnsrfour I^\text R &= \tnsr I\boxtimes\tnsr I = \vctr g_i\otimes\vctr g^j\otimes\vctr g^i\otimes\vctr g_j \\ \tnsrfour I^\text L &= \tnsr I\odot\tnsr I = \vctr g_i\otimes\vctr g_j\otimes\vctr g^j\otimes\vctr g^i \end{align*}

## Tensor derivatives

\begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \frac{\partial A_{ij}}{\partial B_{kl}}\,\vctr g^i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g^j \end{align*} \begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContInOut\tnsr C,_{\scriptscriptstyle\tnsr B} \\ (\tnsr A \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\tnsr B + \tnsr A\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (\tnsr A : \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContOutIn\tnsr B + \tnsr A\dblContInOut\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (f \tnsr A),_{\scriptscriptstyle\tnsr C} &= \tnsr A\otimes f,_{\scriptscriptstyle\tnsr C} + f\tnsr A,_{\scriptscriptstyle\tnsr C} \end{align*}

## References

[1]
O. Kintzel & Y. Başar
Fourth-order tensors  tensor differentiation with applications to continuum mechanics. Part I: Classical tensor analysis
Z. angew. Math. Mech. 86 (2006) 291311
Topic revision: r5 - 20 Jan 2014, PhilipEisenlohr

• News
14 Sep 2020
CMCn2020 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung (cancelled)
22 Aug 2020
Release of first preview version of DAMASK 3
19 Feb 2020
26 Mar 2019
DREAM.3D 6.5.119
(released 2019/03/22) comes with a DAMASK export filter
25 Mar 2019
Release of version v2.0.3
21 Jan 2019
DAMASK overview paper finally published with full citation information available
01 Dec 2018
17 Sep 2018
CMCn2018 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung
22 May 2018
Release of version v2.0.2
01 Sep 2016
CMCn2016 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung
25 Jul 2016
Release of version v2.0.1
08 Mar 2016
Release of version v2.0.0
22 Feb 2016
New webserver up and running
09 Feb 2016
Migrated code repository from Subversion to GitLab
17 Dec 2014
Release of revision 3813
14 May 2014
Release of revision 3108
02 Apr 2014
Release of revision 3062
16 Oct 2013
Release of revision 2689
15 Jul 2013
Release of revision 2555
15 Feb 2013
Release of revision 2174
13 Feb 2013
documentation
16 Dec 2012
rendering
23 Nov 2012
Release of revision 1955
15 Nov 2012
Release of revision 1924
01 Nov 2012
Updated sidebar
30 Oct 2012
Significant website updates and content extensions

Copyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection